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A multigrid pseudospectral method for steady
�ow computation
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SUMMARY

In this work two-dimensional steady �ow problems are cast into a �xed-point formulation, Q=F(Q).
The non-linear operator, F , is an approximate pseudospectral solver to the Navier–Stokes equations. To
search the solution we employ Picard iteration together with a one-dimensional error minimization and
a random perturbation in case of getting stuck. A monotone convergence is brought out, and is greatly
improved by using a multigrid strategy. The e�cacy of this approach is demonstrated by computing �ow
between eccentric rotating cylinders, and the regularized lid-driven cavity �ow with Reynolds number
up to 1000. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Incompressible steady �ow computation is interesting in its own right. Among the several
formulations of the Navier–Stokes equations the primitive variable approach is preferred by
many researchers owing to its feasibility for both two- and three-dimensional problems. How
to deal with the pressure term, or the incompressibility constraint, is the main di�culty asso-
ciated with this approach. The arti�cial compressibility method as proposed by Chorin [1] is a
marked scheme in conjunction with pseudo-unsteady simulations. If the steady �ow is expected
from real unsteady simulations, one has to devise a suitable boundary condition for solving
the pressure Poisson equation. For two-dimensional settings the vorticity–streamfunction for-
mulation, as adopted in this work, is an oft-cited alternative owing to its automatic satisfaction
of incompressibility. However, there exists an asymmetric imposition of boundary conditions
on vorticity and streamfunction.
As far as numerical approximations are concerned, most of the spatial discretization tech-

niques such as �nite-di�erence, �nite-element, �nite-volume, and spectral methods have been
employed with success in di�erent aspects. They are expounded in the books by Peyret and
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Taylor [2], Gresho and Sani [3], Ferziger and Peri�c [4], Canuto et al. [5], Peyret [6], to
name but a few. We adopt the pseudospectral approach for its high order of accuracy and
collocation feature in handling nonlinearity. Although the potential good accuracy suggests
us to solve smaller systems of equations, they are however much more ill-conditioned than
those obtained by lower order schemes like �nite di�erence. Preconditioning in one form or
another is needed if iterative methods are invoked.
We regard here the steady Navier–Stokes equations as two coupled Poisson equations for

�nding vorticity and streamfunction simultaneously. The coupling arises from the source terms
and the overspeci�ed boundary conditions for streamfunction. In our approach the convection
part of the vorticity transport equation is treated as a trial source term, Q, to the vorticity Pois-
son equation. This quantity will be updated by a non-linear operator, F(Q), if we carry out the
coupled Poisson solver. Thus the goal is to �nd Q such that F(Q)=Q, a �xed-point formu-
lation. As a consequence, the wanted solutions to vorticity and streamfunction are also �xed.
The construction of the operator, F(Q), is detailed in Section 2. Via the �xed-point for-

mulation, Picard iteration is a natural scheme for �nding the solution. To be successful we
incorporate it with a one-dimensional error minimization process. The performance can be
greatly improved by putting the scheme into a multigrid fashion. We have demonstrated it
recently [7] but in connection with a �nite-di�erence approximation. The subtlety of F(Q)
is increased by pseudospectral approximation, and the above procedure is prone to get stuck,
especially when the Reynolds number is not small. A random perturbation is introduced to
sustain the line search, and the monotone convergence is recovered. The whole procedure is
detailed in Section 3.
The e�cacy of the proposed scheme is demonstrated in Section 4. We compute the steady

�ow between two eccentric cylinders rotating in several di�erent modes. Such a con�guration
is interesting for lubrication studies, but is not standard for applying pseudospectral method.
We also compute the regularized lid-driven cavity �ow with Reynolds number up to 1000.
Some comparisons with existing results are included.

2. PROBLEM FORMULATION

Consider a two-dimensional incompressible �ow con�ned in a bounded region, �̃, which
can be simply or doubly connected. For applying pseudospectral discretization a standard
domain, �̃=�= [−1; 1]× [−1; 1], is assumed if it is simply connected. Otherwise a smooth
co-ordinate transformation, (x; y) �→ (�; �), is introduced to turn a doubly connected �̃ into a
rectangular one, �= [0; 2�]× [−1; 1]. The boundaries or cutting lines of �̃ corresponding to
the top, bottom, left, and right edges of � will be denoted by �1;�2;�3, and �4, respectively.
The �ow is governed by the steady Navier–Stokes equations in terms of vorticity(!) and
streamfunction( ) as follows.

Re( y!x −  x!y)=!xx +!yy (1)

 xx +  yy=−! in �= �̃ (2)

 =0 and @ =@�= g; on @�=
4⋃

i=1
�i (3)
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In Equation (3) the normal derivative or Neumann condition, g, is prescribed. For doubly
connected �̃ these equations are transformed into the following:

Re( �!� −  �!�)= (�!�� + �!�� + �!�� + a!� + b!�)=J (4)

(� �� + � �� + � �� + a � + b �)=J = −!=J in � (5)

 (0; �)=  (2�; �) and !(0; �)=!(2�; �) on �3 ∪�4 (6)

 =0 on �1;  =f on �2; and @ =@�= g on �1 ∪�2 (7)

Unlike g, the Dirichlet constant, f, in Equation (7) is determined a posteriori by the integral
conditions ∮

�1
@!=@�=

∮
�2
@!=@�=0 (8)

They are equivalent to the univalence of pressure:
∮
dp=0 around �1 and �2.

In Equations (4)–(5) we have the transformation’s Jacobian: J = |@(�; �)=@(x; y)|, and the
following relations:

�= �2x + �2y; �= �2x + �2y; �=2(�x�x + �y�y); a= �xx + �yy; b= �xx + �yy (9)

For simplicity, we shall assume the transformation is started by a conformal mapping, and
continued by an independent remeshing in each spatial dimension. This will yield �=0, or
the vanishing of the cross derivative term.
The unknowns, ! and  , are to be determined over the Chebyshev or Fourier collocation

points depending on the boundary condition in each dimension. Their �rst and second deriva-
tives are derived from the corresponding pseudospectral interpolants. Each multiplication or
division is handled by means of collocation. These procedures are standard to pseudospectral
methods, and are expounded, for example, in the books by Gottlieb and Orszag [8], Canuto
et al. [5], and Fornberg [9].
Such an approximation to the Laplace operator appearing on the right-hand sides of Equa-

tions (1) and (4), as well as on the left-hand sides of Equations (2) and (5), results in a
matrix, L. The whole estimation of vorticity convection,  y!x −  x!y and  �!� −  �!� in
Equations (1) and (4), respectively, is denoted by Q for the time being, and the Navier–Stokes
equations are formally reexpressed as a system of two coupled Poisson equations:

Re ·Q=L!; L = −!=J in � (10)

suitable Dirichlet conditions in place of Equation (3) or (7) for both  and ! (11)

where J ≡ 1 if no co-ordinate transformation is involved. To resolve the further coupling from
the boundary conditions, a simpli�ed version of Equations (10)–(11) is introduced.

0=L!; L =−!=J in � (12)

 =0; !=w on Dirichlet boundaries; plus periodic condition; if any (13)

The purpose of solving these Stokes-like problems with suitable Dirichlet data, w, will be
clear as we proceed.
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Let the indices, i and j, denote the generic collocation points on the boundaries where
Dirichlet condition for  is speci�ed, as shown in Equations (3) and (7). Denote by �ij the
Kronecker function of these indices; that is �ij=0 unless i= j, in which case �ij=1. For each
index i, we solve Equations (12)–(13) with Dirichlet data w= �ij. These solutions, {!i;  i},
are used to construct a matrix, S, whose ith column records the pseudospectral approximation
of the normal derivative of  i on the Dirichlet boundaries. We shall call it a Stokes corrector,
which is similar to the in�uence matrix employed in other numerical methods [10, 11]. We
assume S is invertible here, but will give a correction in Section 4.
As the �rst application we employ the matrix, S, to solve a particular case related to

Equations (4)–(7). Namely, �nd !∗ and  ∗ such that

0 =L!∗; L ∗=−!∗=J in� (14)

 ∗(0; �) =  ∗(2�; �) and !∗(0; �)=!∗(2�; �) on �3 ∪�4 (15)

 ∗ =0 on �1;  ∗=1 on �2; and @ ∗=@�=0 on �1 ∪ �2 (16)

To this end, we �rst solve Equations (14)–(16) using the homogeneous Dirichlet condition on
!∗ to replace the Neumann condition on  ∗. Denote the solution by !◦ and  ◦, and compute
the vector of normal derivatives, v= @ ◦=@�, on �1 ∪�2. Then solve Equations (12)–(13) with
w=−S−1 v. Adding the results to !◦ and  ◦ yields the wanted answer. This solution will
yield two integral constants which are equal in theory, but can be slightly di�erent in practice.
So their sum is used: ∮

�1
@!∗=@�+

∮
�2
@!∗=@�=p∗ �= 0 (17)

Now we are ready to state the �ow problem. Find Q such that Q=F(Q), where F(Q) is
computed as follows.

Algorithm A

1. Given Q, solve Equations (10)–(11) with zero Dirichlet data. Denote the results by !0

and  0, and compute the vector of normal derivatives, v= @ 0=@� on Dirichlet bound-
aries. Check it with the prescribed value, g, on Equations (3) or (7).

2. Solve Equations (12)–(13) with w=S−1(g− v). Denote the results by !1 and  1.
3. Set q=0. If �̃ is doubly connected, check the integrals in Equation (8) with !=!0+!1.
Denote their sum by p, and, from Equations (14)–(17), set q=−p=p∗.

4. Let !=!0+!1+q!∗ and  =  0+ 1+q ∗. De�ne F(Q)=  y!x− x!y or  �!�− �!�,
by pseudospectral collocation.

3. THE NUMERICAL METHOD

As discussed above, one key ingredient in Algorithm A is to solve single Poisson equation,
like Lx= b, with entire Dirichlet or Dirichlet=periodic mixed boundary conditions. We solve
this system iteratively by quasi-minimal residual method (QMR) [12]. Since the condition
number of L increases rapidly with the number of collocation points, proper preconditioning
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is needed. This is accomplished here by the �nite-di�erence counterpart of L, as described
below.
Instead of using spectral polynomials, we approximate the �rst derivative in each spatial

direction using the local, three-point Lagrange interpolations. These data are used to construct
the local, three-point Hermite interpolations for obtaining the second derivatives. It leads to a
�ve-point scheme in each spatial direction for approximating L. This approach appears to be
more e�ective as a preconditioner than that directly using �ve-point Lagrange interpolations,
given the nonuniformity of the underlying grid.
Since our goal is to �nd the �xed point, Q=F(Q), it is natural to employ the Picard

iteration: Qn+1 =F(Qn) with some initial trial Q0, and look forward to its convergence. This
simple process, however, is fail-prone, given the complexity of the operator F as described
by Algorithm A. We introduce below a workable modi�cation.

Algorithm B

1. Let Qn and Qn+1 be the two most recent iterants, whether Qn+1 =F(Qn) or not. Perform
the following error minimization:

min
	∈[−�; � ]

J(	) where �=O(1) and (18)

J(	)= ‖F(Qn + 	(Qn+1 −Qn))− (Qn + 	(Qn+1 −Qn))‖2 (19)

In Equation (19), ‖ · ‖ stands for the ‘2-norm over the collocation points. By going
over the steps in Algorithm A, one can �nd that J(	) is a polynomial of degree four.
Therefore the minimization can be done with ease.

2. Denote by 	∗ the minimizer closest to 0, and let Q∗=Qn + 	∗(Qn+1 − Qn). De�ne

∗= ‖F(Q∗) − Q∗‖=‖F(Qn) − Qn‖. If 
∗ is close to 1 (say, 
∗ ¿ 0:95), a stagnant
iteration is encountered; go to Step 3 for a cure. Otherwise make the updates: n← n+1,
Qn←Q∗, Qn+1←F(Q∗), and go back to Step 1.

3. Pick at random a 	∈ [−�; �], and set Q∗=Qn + 	(Qn+1 − Qn). Update Qn+1 only:
Qn+1←Qn + (F(Q∗)−Q∗), and go back to Step 1.

In other words, those Qn’s according to Algorithm B form the modi�ed Picard iterants. The
error, ‖F(Qn)−Qn‖, is non-increasing by design. Thanks to the random perturbation in Step 3
for sustaining the line search, a monotone decreasing is observed in numerical experiments.
Note that we do not claim it is a global scheme; the alteration of search direction is mainly
to get rid of saddle-like traps rather than well-like ones.
By experience from preliminary studies [13] and a previous work [7] based on �nite-

di�erence approach, Step 3 in Algorithm B is seldom invoked for �ows with Re¡100. How-
ever, the hit rate of this step is about 30% for �ow with Re∼ 1000. In either case the
convergence can be greatly improved by casting Algorithm B into a multigrid fashion.
We adopt here the nonlinear full approximation scheme (FAS), as expounded by Brandt

[14]. V-cycling and standard double coarsening on the collocation points are used. Only the
prolongation, I hH , and restricition, I

H
h , need a further explanation. Let #H be any coarse grid

function. The prolongation, I hH#H , is directly derived from #H ’s pseudospectral interpolant.
To be more shape-preserving, one can extend this interpolant’s modal coe�cients across the
Nyquist bound by even and odd re�ections for cos and sin modes, respectively. As a fact, this
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information is ready in many Fourier transform packages. Then, a high-order low-pass �lter
is applied to these coe�cients before turning them into nodal values. The family of �lters
with integer parameter k¿4:

’k(x)=1− 1�
∫ x

0
�k(1− �)k d� where �=

∫ 1

0
�k(1− �)k d� (20)

proposed by Vandeven [15] serves well for this purpose. On the other hand, the restriction,
IHh #h, of any �ne grid function, #h, is obtained through least-squares principle. That is, ‖#h−
I hH (I

H
h #h)‖=minimum in ‘2-norm over the �ne-grid collocation points.
Note that we employ the same strategy to construct the multigrid version of the �nite-

di�erence preconditioned QMR iteration for the kernel Poisson solver in Algorithm A. Because
of linearity FAS reduces to the usual correction scheme, and the intermediate relaxation in the
�ne-to-coarse branch of V-cycling can be saved. Namely, the cycling becomes sawtooth-like.
Di�erent choice of these spectral multigrid components can be found in the work by Zang
et al. [16].
We conclude this section with a remark that applying a �ltering to the estimations of Q

and F(Q) (i.e. Step 4 in Algorithm A) can accelerate the convergence of Algorithm B as
well. See examples shown below.

4. WORKED EXAMPLES AND DISCUSSIONS

We shall �rst show the spectral accuracy of our scheme when it is applied to a class of �ow
problems where the analytic results are available to us. So, consider �ow between two cylin-
ders of which at least one has a constant rotation about its axis. The inner and outer cylinders
have radii d1 and d2, respectively. Their centers are separated by a distance 06�¡d2 − d1,
and yield an eccentricity = �=(d2 − d1). The constant angular velocities are denoted by �1
and �2, respectively, and their signs indicate the senses of rotation (e.g. positive= clockwise).
The Reynolds number Re is de�ned here as Re=d21 | 	�|=�, where �=kinematic viscosity, and
	�=�1 unless �1 =0, in which case 	�=�2. These �ows are related to the lubrication studies
of journal bearing.
Clearly, this is not a standard setting for applying pseudospectral methods. A co-ordinate

transformation is made as follows. Let z= x+iy. The conformal mapping in terms of complex
variable:

�=
z + c
1 + cz

where c=
�

1 +
√
1− �2

and �=
2�d1

d22 − d21 − �2
(21)

transforms the cylinders into a concentric con�guration in the �-plane. Let �= exp(�̃ − i�̃).
The collocation points in the �̃ and �̃ directions are respectively determined by requiring them,
after the inverse map z=(� − c)=(1 − c�), uniformly located along the inner cylinder, and
a�nely similar to the Chebyshev abscissa along the radius spanning the widest gap between
the cylinders. As shown in Figure 1, such a remeshing is used to alleviate the distortion on
discretization brought about by eccentricity. Denote them by �̃= �̃(�) and �̃= �̃(�), we get
Equations (4)–(8) in place.
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(a) (b)

Figure 1. Layouts of the pseudospectral grid between two eccentric cylinders: (a) the usual one;
and (b) that improved by remeshing. They have the same number of grid points, and are based on

the conformal mapping mentioned in the text.

Table I. Con�guration of eccentric rotating cylinders.

Case d1 d2 � �1 �2

1 1 2 0.5 −1 0
2 1 2 0.5 0 −1
3 1 2 0.5 1 −0:5
4 1 2 0.7 −1 −0:5

The �ow is examined under the settings summarized in Table I. We begin with computing
the Stokes �ow, i.e. Re=0, for which the result can be compared with the analytic �ndings
by Wannier [17] and Ballal and Rivlin [18]. To check the accuracy the numbers of the
pseudospectral nodes in � and � directions are, respectively, equal to N and N +1, where N
ranges from 8 to 32. The base-10 logarithm of the maximum and root-mean-squares errors
for the four cases listed in Table I are plotted against N in Figures 2(a–d) and 2(e–h),
respectively. The spectral accuracy is demonstrated by the almost linear behaviour of these
curves.
The central part of these computations lies in the Poisson solver, Lx= b. As discussed in

Section 3, such a system is �rst preconditioned by a �nite-di�erence approximation and then
solved iteratively by QMR scheme in a multigrid fashion. Within each sawtooth-like cycle,
the QMR scheme takes 3–4 iterations for each postsmoothing. We show its typical three-grid
performance in Figure 3, by measuring the decay of log10(‖b−Lx‖) against the cycling in-
dex. This is related to constructing the Stokes corrector matrix, S, via Equations (12)–(13).
The decays of !- and  -residuals varying with the column indices of S are plotted together
in Figures 3(a) and 3(b), respectively. Fast convergence is evident in view of their drops in
each vertical direction.
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Figure 2. Base-10 logarithm of (a)–(d) maximum and (e)–(h) root-mean-squares errors against the
number of pseudospectral nodes for �ow cases list in Table I. –�–, vorticity; –◦–, streamfunction.
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Figure 3. Three-grid Poisson solver with (a) !- and (b)  -residuals of form log10(‖b−Lx‖) dropping
with the multigrid cycling index. They are related to constructing the matrix S, and plotted together

against column indices of S.
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Figure 4. (a)–(d) Histories of log10(‖F(QN ) − QN‖) against multigrid cycling index N ,
in one (◦)-, two (�)-, and three (�)-grid iteration for �ow cases listed in Table I; and

(e) summary of the convergence rates.
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(a) (b)

(c) (d)

Figure 5. Streamlines (dashed on negative levels) for Cases 1 and 2 in Table I: (a)–(b)
Re=0; (c)–(d) Re=100.

We then compute �ows with Re=100, using the corresponding Stokes �ows as the initial
guess. The numbers of the pseudospectral nodes in � and � directions are equal to 32 and
25, respectively. The convergence histories related to the one-, two-, and three-grid imple-
mentations of Algorithm B are shown in Figure 4(a–d) for the four cases listed in Table I,
respectively. Within each V -cycle the line search or error minimization speci�ed in Algorithm
B is performed three times as the pre- and post-relaxation; the number of relaxations at coarser
grid can be slightly increased. In each case the ‘2-norm, ‖F(QN )−QN‖, decays exponentially
with the multigrid cycling index, N , in proportion to �N for some constant, 0¡�¡1. We call
this constant convergence rate, and the result is summarized in Figure 4(e).
The comparisons between the �ows with Re=0 and 100 are shown in Figures 5 and 6 for

streamlines, and in Figures 7 and 8 for vorticity contours. Di�erent types of recirculation
region are formed, and closely related to the cylinders’ rotation modes. Symmetry breaking is
the apparent e�ect of convection on these regions. For each of them the locations such as the
eddy center and the separation and reattachment points, however, do not always change in the
direction parallel to the cylinder’s rotation. They can depend on the Reynolds number. Such
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(a) (b)

(c) (d)

Figure 6. Streamlines for Cases 3 and 4 in Table I: (a)–(b) Re=0; and (c)–(d) Re=100.

a fact has been discussed, for example, by Ballal and Rivlin [18] and Chou [7], using a �rst-
order perturbation or a �nite-di�erence method. To provide a further evidence we compute
the �ows in Case 4 of Table I, for Reynolds number ranging from 0 to 100. The changes of
the two eddies and their common closure points are shown in Figure 9. They also provide a
quantitative improvement on our previous �nite-di�erence work mentioned above.
Now, let us move on to the more standard setting: the lid-driven cavity �ow. First and

foremost, we encounter the singularity of the Stokes corrector matrix, S, as constructed in
Section 2. Numerically, the boundary conditions on the four corners are irrelevant to the �ow
calculation using a tensor-product-like, collocated discretization. So they are not involved in
constructing S. It is found that S still has a four-dimensional null space. If w in Equation (13)
is chosen from this space, it gives a negligible solution to Equation (12). Such a fact, for
example, has also been examined by Ehrenstein and Peyret [11]. Therefore the inverse, S−1, is
interpreted here in terms of a variant of pseudoinverse mimicking the domain decomposition.
First we partition the boundary collocation points into two groups. Namely, the eight col-

location points containing the four corners form one group, and the remaining points form
the other. The restriction operators with respect to the former and latter groups are denoted

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:25–42
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(a) (b)

(c) (d)

Figure 7. Vorticity contours (dashed on negative levels) corresponding to Figure 5.

by R̃ and R, respectively. Then the matrix, S̃=RSR� where R� means the transpose of
R, is invertible. Denote the identity matrix by I, and de�ne

P=R�S̃−1R and T= R̃S(I −PS) R̃
�

(22)

where T is an 8× 8 matrix, but of rank 4 only. The solution w to Sw= v is obtained as
w= R̃�w1 +R�w2 where

Tw1 = R̃(I −SP)v by means of pseudoinverse (23)

w2 = S̃−1R (v −SR̃�w1) (24)

As obtained by Equations (22)–(24) the Dirichlet boundary data, w, for the vorticity Poisson
equation presents irregularity around the corners of the cavity, if a constant speed is speci�ed
on the driven lid. To be amenable to the pseudospectral approximation, a regularized version
is used. Namely, the constant function v≡ 1 is replaced by v=(1−x2)2, for −16x61. It has
been shown by Shen [19] that this model has qualitative features similar to the original one.
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(a) (b)

(c) (d)

Figure 8. Vorticity contours corresponding to Figure 6.

In the following we want to demonstrate the computations of �ows with a Reynolds number
like Re=0; 100, and iteratively doubled till Re=1000. Each latter case use the previous one as
the initial guess. The numbers of the pseudospectral nodes in � and � directions are both equal
to 37. Figure 10(a–e) present the convergence histories related to the one-, two-, and three-
grid implementations of Algorithm B against the multigrid cycling index; their convergence
rates are summarized in Figure 10(f). Note that these rates are not sensitive to initial guesses,
which mainly in�uence the initial residuals.
In view of Figure 10, a monotone convergence also holds in these computations where the

random perturbation introduced in Step 3 of Algorithm B plays an important role. Without it
the algorithm gets stuck within few iterations, especially when Re is large. To demonstrate
this, let each call to Algorithm B correspond to an entry of a matrix. This entry will be
marked with an asterisk(∗) if Step 3 of Algorithm B is not invoked; otherwise it is left blank.
Figure 11 shows for Re=1000 the appearances of these matrices for each of the one-, two-
and three-grid implementations. The percentage of blanks in each matrix is called the hit rate
of random perturbation. In view of Figure 11(c) this rate will increase if the �ow is poorly
represented on the coarsest grid.
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Figure 9. Polar angles (in degree) of stagnation points varying with Re in Case 4 of Table I: (a) upper
and (b) lower closure points; (c) inner and (d) outer eddy centers.

In addition to the development along the sides of the cavity, the vorticity �eld around the
cavity center also tends to develop richer structure for �ow with higher Reynolds number. This
happening does not well match the distribution of Chebyshev collocation points. Therefore we
see the slowdown of the convergence rate in Figure 10(f). Nevertheless, we get the solution
with ‘2-norm error less than 10−10 in a few tens of iterations. The same accuracy would be
achieved by other methods [19, 20] in a few hundreds or even a few thousands of time steps,
where cheaper operations are possible in each step.
The computed �ow patterns are shown in Figure 12(a–c) for streamlines, and in

Figure 12(d–f) for vorticity contours. The centers of the primary and secondary vortices
appearing in Figure 12(a–c) are located and plotted in Figure 13, together with the measure-
ments by some other researchers employing a spectral or pseudospectral approach [19–21].
Good agreement is found in the trend of these locations against the Reynolds number.
Finally, we discuss a �ltering e�ect on the estimation of the convection term,  y!x−  x!y

or  �!� −  �!�. Such a �ltering is intended to be used in Algorithm B in conjunction with
the �nest grid only. Parallel to the direction of di�erentiation a high-order low-pass �lter is
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Figure 10. Histories of log10(‖F(QN )−QN‖) against multigrid cycling index N , in one (◦)-, two (�)-,
and three (�)-grid iteration for regularized lid-driven cavity �ows. (a)–(e) Re=100; 200; 400; 800 and

1000, respectively; and (f ) summary of the convergence rates.

applied to the modal coe�cients of each individual pseudospectral interpolant, before turning
these coe�cients into nodal values. As shown in Equation (20), the �lter family proposed by
Vandeven [15] is employed here.
The phenomena of monotone convergence hold whether or not this �ltering is activated.

However, the �ltered version can converge at a speed 2.5 to 4 times faster than the un�ltered
one, as shown in Figure 14(a–c) for Re=200, 400, and 1000, respectively. For each of these
Reynolds numbers the two versions of solutions have a relative di�erence, in ‘2-norm, less
than 0.6, 1.1 and 3%, respectively. It leads to the conclusion that suitable �ltering is favourable
in conjunction with collocation approach, when the original pseudospectral resolution is �nite
but reasonably good.

5. CONCLUSION

We have proposed a multigrid pseudospectral method to simulate steady �ows. These �ow
problems are cast into a �xed-point formulation, and solved by a Picard-like iteration. The
success of this scheme lies in three crucial factors. Namely, one-dimensional error minimiza-
tion, random perturbation for sustaining the line search, and multigrid implementation. Worked
examples fall into two categories. That is �ow between two eccentric rotating cylinders, which
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Figure 11. The occurence of random perturbations represented by blank spots in matrices recording all
calls to Algorithm B. (a)–(c): one-, two- and three-grid implementation, respectively.
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Figure 12. (a)–(c) streamlines and (d)–(f) vorticity contours (dashed on negative levels) for cavity
�ows with Re=100; 400 and 1000, respectively.
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Figure 13. Re-dependence of (a)–(c) x- and (d)–(f) y-co-ordinates of the primary, left secondary, and
right secondary vortex centers of cavity �ows. Symbols (�, , �) correspond to References [19–21].
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Figure 14. Comparisons of convergence between estimating Q with (�) and without (∇) �ltering for
cavity �ows; (a)–(c) Re=200; 400 and 1000, respectively.

demonstrates the scheme’s e�cacy in a setting not standard to pseudospectral methods; and
�ow in a regularized lid-driven cavity, which demonstrates the scheme’s e�cacy in dealing
with strong convection.
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